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Universality of the crossing probability for the Potts model for g=1, 2, 3,4
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The universality of the crossing probability,s of a system to percolate only in the horizontal direction was
investigated numerically by a cluster Monte Carlo algorithm forgtsate Potts model fay=2, 3,4 and for
percolationq=1. We check the percolation through Fortuin-Kasteleyn clusters near the critical point on the
square lattice by using representation of the Potts model as the correlated site-bond percolation model. It was
shown that probability of a system to percolate only in the horizontal direetignhas the universal form
mhs=A(q)Q(2) for q=1,2,3,4 as a function of the scaling varialate {b(q) L[ p—p.(q,L)]}¥@. Here,
p=1—exp(—pP) is the probability of a bond to be closefi(q) is the nonuniversal crossing amplitudggq)
is the nonuniversal metric factar(q) is the correlation length index, arddq) is the additional scaling index.

The universal functio(x)=exp(—|2]). The nonuniversal scaling factors were found numerically.
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I. INTRODUCTION The continuum limit of the crossing probability,(p.)
was investigated by J. Cardy by conformal field methods
The concept of the universality and scaling relatiptiss ~ [13—13. The analogous formula for the crossing probability
a general concept of the modern phase transition theory. Th@h, = Th— 7hs Was found by Watts[16]. The works of
main point of the scaling theory is that in the vicinity of the Smirmov [17,18 analytically proved that the crossing for-
critical point for a system of linear side the critical behav- Mula holds for the continuum limit of site percolation on the
ior of thermodynamical quantities can be expressed as a urffiangle lattice[17,18.
versal function of two variables: reduced temperature The g-state Potts model can be represented as the corre-
=(T—T,)/T, and external fielch. The finite-size scaling of lated site-bond percolation in terms of Fortuin-Kasteleyn

thermodynamical functions of spin models was studied theogFK) clusters|19]. At the critical point of the second order
retically and numericall{2—5]. In Ref. [6], Privman and phase transition Potts model, FK clusters exhibit the perco-

Fisher proposed the idea of the universal finite-size scalin tion transition. So, there is an intrinsic relationship between
with nonuniversal metric factors. For example, for the free- .r|t|cal properties of the Pqtts mo_deI and percolgtlon proper-
energy density of system siteand dimensiord, fues of FK clgsters. The universality of the crossing probabil-
ity for the Ising model on rectangle lattices of square, hon-
f(T,h;L)=L"9Y(C,7LY”,C,h LB M7y, (1) eycomb, and triangle geometries was investigated_ by
Langlandset al. [20,21]. Hu, Chen, and Lin show the uni-
versality of the crossing probabilityr, and a number of

scaling index of magnetization, andis the scaling index of percolation clusters for the correlated site-bond percolation

magnetic susceptibility. For systems of different boundaryq:2 [2,2]' . .
conditions, aspect ratios, and geometrisguare, honey- In this paper, the crossing p'robabllltles o_f FK c_Iusters is
comb, trianglg, the scaling functiorY(x,y) is universal and stud|e_d numenc_glly. We investigate the unlversal_lty of the
only metric factor<C, andC, are system dependent. Scaling €70SSIng probability with respect to a number of spin states
properties of thermodynamical functions of the Potts modepf the Potts model. We show r}umer!cally thqt the_ pro_bab|I|ty
were investigated in Ref$7,8]. of a system to percolate only in horlzo_ntal dlrectmnsl/Ls a
Langlands, Pichet, Pouliot, and Saint-Aup@] show that umver?(a; function of the scaling variabte=[b(q)L™"(p

for site and bond percolation on square, honeycomb, and Pc)]”" for q=1,2,3,4, wherep=1—exp(-pg) is the
triangle lattices with aspect ratias a3, anday3/2, re- probability of bond to be closed3=1/Tkg is an inverse

spectively, the crossing probability,, of a system to perco- tempe_ratrl]Jre,pc=|1gexp_(—,8c) IS t_he Io<|:at|on_ Off critical q
late in the horizontal direction is the universal functionaof ~POINt In thep scale,b(q) is a nonuniversal metric factor, an

Hu and Lin show that by choosing a very small number of¢(a) is a scaling index, described dependence of the form of

nonuniversal metric factors, all the scaled data for percolalN€ €rossing probability on.
We show that for each valug=1,2,3,4 on the square

tion functions and the number of percolating clusters on " > ) i
square, honeycomb, and triangle lattices may fall on thedtticé, index¢ practically does not depend on the lattice
same universal scaling functiof0,11. Their scaling argu-  SiZ€: Therefore, by introducing this indexq), we can lay
ment wasx= (p— p.)LY*, wherep, is the critical pointLis  ©" the same curve the points for differeptin the critical
the lattice size, and' is the correlation length index. The F€gion.

scaling of crossing probabilities for the three-dimensional
percolation was investigated in R¢1.2].

wherev is the scaling index for correlation lengtf, is the

II. CROSSING PROBABILITIES FOR THE POTTS
MODEL

In the Potts model, each spim, can take one of the
*Electronic address: vasilyev@itp.ac.ru different values 1. ..,q and the Hamiltonian is written as

1063-651X/2003/6@)/0261255)/$20.00 68 026125-1 ©2003 The American Physical Society



OLEG A. VASILYEV PHYSICAL REVIEW E 68, 026125(2003

H=—J3%;)6(o;,0)), whereJ is the ferromagnetic cou- 1 if G percolates only in horizontal direction
pling constant, which we set equal to 1. The partition func- |, (G)= 0

. g in all others cases.
tion of the Potts moddI23] is

(4)

We mean thaG percolates only in the horizontal direction if
Z:; exp{—,BH(w)]=§ (II_J[) [(1=p)+pdlai,ay)], it contains at least one connected component touching left

(2)  and right sides of the lattice, and there are no components
joining top and bottom sides. Therefore, the crossing prob-
ability 7,4(8;L,q) of a system of sizé& with g possible spin
states to percolate only in the horizontal directioatan be
written as

where B=1/Tkg is the inverse temperaturep=1

—exp(—p) is the probability of bond to be closed, and 1

—p=exp(=p) is the probability of bond to be open;

summation is performed over all spin configuratioos 1 B

Sometimes thg term in square tl)orackets is expressed Ths(BiL.A)=7 GEéﬁ Ihs(G)qC(®) (1 —p)NP(CIph(E),

via v=exp)-1: [(1-p)+pa(o;,0;)]=exp(- A1 5

+vd(ay,0)], but we write Eq.(2) via p, to emphasize the

fact that in correlated site-bond percolatifitg], the prob- Here,p=1—exp(—pB). We can introduce the crossing prob-

ability of bond to be closed ip and to be open is 4 p. ability for vertical directions,g in the same way. But on the
For the square lattice of linear sizewith periodic bound- square lattice,m,s=,s and later on, the investigate only

ary conditions, the total number of bondsNs=2L2. Letus  hs-

define by £ the graph of all the edges on the lattice. The Let us notice thatr,(B;L,q) has a maximum near the

product over all bondsi (j) consists oN terms, so the prod- critical point B,(L,q) because in the ordering phage

uct may be expanded as sum f @rms. Let us associate to > S¢(L,q), the most probable configurations contain large

each of these "2 terms subgraplG of graphZ, by the fol-  clusters touching top and bottom sides of the lattice, and do

lowing rule. Each of ? terms can be considered as the prod-not contribute tomy,s.

uct of N factors. Each factof(1—p)+pé(o;,0;)] corre-

sponds to some edge,|) of graph£. To constructG, we ll. NUMERICAL RESULTS

perform the following procedure. If this factor for edgejj

is equal to - p, we delete edgei(j) from subgraph. If this

factor for edge i,j) is equal top, we leave this edge in the

subgraph. So we associate to each term in &)isubgraph

G. Each subgrapl® consists ofo(G) edges(closed bonds

and C(G) connected components. The term in Eg). cor-

We use the Wolff cluster algorithii24] to generate the
different spin configurations. For each spin configuration we
generate a bond configuration in accordance with Rie].
Then, we break the lattice into independent clusters of con-
nected sites by using the Hoshen-Kopelnas] algorithm.

: . = Then, we analyze crossing propertlggG) of this configu-
responding toG contains factor (Ep)""*@p™®), and o0 Between checking the crossing we skip five Monte
delta functions guarantee equivalence of spins in each COarlo steps. For each value gf the averaging is performed

nected component. As a result of the summation over ally o o series each of 1@onfigurations. The total number

possible spin conflguratmns.,. the contr.|but|on OfC}Q;S Sub-g configurations is 10 Sets of configurations are used for
graph G into the partition function is gq~'~'(1

.__the estimation of the numerical inaccuracy. Quaritityis an
—p)N PG pP@)  Therefore, we can replace the summation Y. Quarlijt

! : . . . indicator function. It means that it takes values 0 or 1
over all spin configurations in Eq2) by summation over all ¢, oach configuration. Therefore, the resolution of our
possible subgrapt® on L:

computations for m,s is 105 We compute data
for g=1(percolation),2,3,4 and lattice sizesL
=16,32,48,64,80,96,112,128. For each pajjL(), we per-

Z=C§£ qe(@)(1—p)N-PCIp(©), 3 form computation for 200 values @ (or p for percolation

in the critical region.
There is a very important question, how the scaling vari-
We shall keep in mind that this definition is valid even for able should be chosen?
the noninteger value aj. The partition function of the Potts For percolationg=1, the scaling variable is defined as
model forg—1 corresponds to the percolation, wherés  the deviation of the bond concentration from critical point
the probability of bond to be occupied. r=p—p.. For the Potts model, we can take
Now we introduce the crossing probability,s, the prob- (1) t=(T-TIT

ability of a system to percolate only in the horizontal direc- 2) TIB—,BC/,B ¢
tion while the percolation in the vertical direction is absent. 3)r= 1_e° S 1—exolBY=p—
We must distinguish it from the probability of a system to [ xpCA)I-L Xp(=Fol=p~pe-
percolate in the horizontal direction irrespective of the per-The first variant=(T—T_)/T. is usual for the investigation
colation in the vertical directionr,,. We define the indicator of thermodynamic quantitigd,23], the second one is widely
function | ,4(G) for each subgrapf® in accordance with the used for the approximation of magnetic susceptibijjtyof
rule the Ising model in the critical regidr26], and the third vari-
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TABLE I. The third momenjus of the crossing probabilityr,

computed for different variablets 7, andr. 02}

q 2 3 4 0.15 |

t —7.1(3)x10% —-9.1(2)x10°° —8(1)x10°1° 2

r  —21(6)x10°% —2.3(2)x10°° —2(77)x 10 *? B o1f

r 2.5(2)x10°° 2.8(1)x10 1.3(5)x 10 1*

0.05 |

antr=p—p. may be argued by the fact that for the site-bond 00_4 0'25 0'_5 ) 0155 06 065 07
correlated percolation, the probability of bond to be occupied p

is p=1—exp(—B). See Eqgs(2) and (3).
Let us evaluate the symmetry of the crossing probability FIG. 1. The crossing probabilityr,(p;L,q) for q=1,2,3,4
as a function of all these variables by comparing third mo-andL =32, 64, 128.
ments of functionm,s. We assume that,, s must be the most
symmetric function as a function of “right” variable. We precisely,,u4/,u§(q=1)23.176(4) Ref.[29] and by Hovy
calculate four moments ofmn(x) as a function ofx  and Aharony,u,/u3(q=1)=3.174(25)[30]. The explana-
=t,7,r, by numerical integration in accordance with formula tion of the non-Gaussian crossing probability shape was first
mo=Jmrs(X)dX, m1=(Luo)[Xmhs(X)dX, wx=(1/ue)f(x  given by Berlyard and Weh31] and was also discussed in
— 1) mhg(X)dx. Results of computationg for the lattice  Ref.[32]. Newman and Ziff verify that the tails of the cross-
sizeL =128 are given in Table I. ing probability fall off as exp—c(p—p)*°], therefore the
We see that for all the casgs; is smaller for scaling tail of the distribution is characterized by the correlation
variabler, with one exceptiomj=4, 7, when numerical error length exponenit33,34. However, as the first approximation
is approximately thirty times greater than valug(7) and  we introduce an additional scaling indéxand check mo-
six times greater thams(r). For all other lattice size& ment ratios for functiorg(x; ) =Aexp(—x). For this func-
=16,...,112, the third momenjs, calculated by using tion g(x;¢), the moment ratios are
variabler, is smaller than fot or for 7. Therefore, we will

work with the scaling variablp=1—exp(— ), the probabil- F(E) F(ﬁ)

ity of bond to be closed fog=2,3,4. The critical point of Ma 4 {

the g-state Potts model on the infinite lattice[®3] p.(q) =l ):T- ©)
=q/(Jg+1). The bond percolation critical poinp.(q H2 F(Z

=1)=13 can be obtained from this formula. Variabe= 1

—exp(- B) naturally provides crossover from the percolationwe calculate moments for several values{adnd put these
to the Potts model. We can plot the crossing probabitity  data into the first {) and the seconﬂ(,u4/,u§)(§)] rows of
as a function op for the percolation and the Potts model on Tapje |1. The choice of values will be argued later. Results
the same graph. of computation of the moments ratiqug/u3)(q) for the

In Fig. 1, data form,s(p;L,q) are plotted forq=1,2,3,4  .rossing probabilitym,(p:L,q) for L=32,128 is placed in
and L=32,64,128. We can see shift of the critical point e fourth and fifth row of Table II. We see that the moments
pc(q,L) for finite lattice sized.. We also see the change of (4iig practically does not depend upon the lattice sizeve
the width of the function due to size scaling. Let us try t0 .nack this fact for other lattice sizes.
identify the shape ofm,s by analyzing ratiou,/u5. We Moment ratios forg(x;{) slightly differ from moment
know that at least for the percolation, functief looks like  ratios for  (this fact will be explained latgr but we can
the Gaussian functiof27] ~A exp(-x’), and for the Gauss- ry to approximate the crossing probability by function
ian function we expecty,/u3)(Gaussiany 3. But, in real-  g(x,¢) and then compare results of approximation with nu-
ity, crossing probabilities are not Gaussian. The momentgnherical data.
ratio for functionar{(p) [the derivative of crossing probabil- Below, we describe the fitting procedure. As we can see
ity mh(p) with respect top], for the percolation model was from Fig. 1, there are many nonuniversal scaling factors for
found by Ziff to beu,/u3(q=1)=3.20(5)[28], and more ¢ the amplitude of the crossing probabili(L,q), the

TABLE Il. The ratio of momentsu4/,u§ for g(x,¢) andmg(p;L.q).

Z 2 32 4/3 6/5
(14! p3) () analytically 3 3.76195 4.22219 4.7434
q 1 2 3 4
(14! 12)(q) numericallyL =32 3.1456) 3.8717) 4.57714) 5.282)
(14/13)(q) numericallyL =128 3.182) 3.91(8) 4.562) 5.304)
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TABLE IV. The scaling index/(L,q) for L=16, 32, 64, 128.

X q 1 2 3 4
25 {(L=16) 1.9213) 157712 1.39815) 1.26418)
5 {(L=32) 1.9004) 155712 1.36413) 1.23§14)
= 2 {(L=64) 1.8864) 15512 1.36713) 1.21§15
15| {(L=128) 1.8875) 1.54514) 1.33713) 1.19814)

FIG. 2. The scaled crossing probability(z)=|In(Q(2))|
=|In(m,9—In[A(L,q)]] as a function of the scaling variable
={B(L,q)[p—pc(L,q) ]} for q=1,2, 3,4 and_=32, 128.

finite-size critical pointp.(L,q), which differs from p.(L
=w,0)=+0/yg+1, the nonuniversal scaling factor
B(L,q), which provides the finite-size scaling of the func-
tion, and the additional scaling ind&XL,q).

We perform the four-parametric fit ofr,¢(p;L,q) by
function (7):

F(p;L,q)=A<q,L>exp(—{B<L,q)[p—pc<L,q>]}“L’q>)i7)

We use points Ing,9>—9 for this fit and the log scale for

Results of the approximation for the scaling indgx ,q)
are represented in Table IV. We can see that this scaling
index practically does not depend upon lattice size. We as-
sume that for each valug we have the additional scaling
index{(q), which is nondependent upon the lattice size. Test
values of{ in the first row of Table Il are chosen to be close
to £(q). It seems that(3)=4/3 and{(4)=6/5.

We know that in accordance with the scaling theory for
each fixed value the crossing probability must be a univer-
sal function of variablex= L (@[ p—p.(L,q)]. Therefore,
we approximate the numerical data 8(L,q) (see Fig. 3
by functionb(q)LY® and represent results in Table V. Re-
sults of the approximatioh(q)LY(® are also shown in Fig. 3
by lines.

We can see that the thermal scaling indgX)) is very
close to the analytical value of the inverse correlation length
index 1#(q) [23], which is represented in Table V for com-
parison. This fact once more confirms our approximation
procedure. The exception is the cage4, for which there is

the ordinate axis. As a result of the approximation, we get & difference betweep(q=4) and 1£(q=4).

set of scaling amplitudesA(qg,L), nonuniversal metric
B(q,L), critical pointsp.(qg,L) and scaling indiceg(q,L).

Many critical quantities in the Potts modgk4 exhibit
logarithmic correctiong35-38. These logarithmic correc-

Then, we use this scaling factors to adjust our numerical datons explain the difference between analytical value(d/

onto one line forq=1,2,3,4 andL=32,128. We plotf
=|In[ m,{p;L,a)]-IN[A(L,g)]| as a function of the new scal-
ing variablez={B(L,q)[p— pc(L,q)1}*“% in Fig. 2.

The scaling straight linelg|, shown in Fig. 2, correspond
to the fitting functionF (z) = exp(—|2)). We see that all points
lie on one curve, and this curve is very close|tb in the

=4)=1.5 and numerical approximation for the scaling index
y=1.396).

IV. CONCLUSIONS

To summarize the results, we can conclude that the cross-

range 0.%z<3. So, we might expect that our fitting proce- ing probability m,,(p;L,q) is a universal functiorQ(z):
dure is correct. However, on the graph, the tail points deviate

from line |z|, and this deviation explains the fact that mo-
ment ratios formpg(p;L,q) in Table Il differ from analytical

The( P;L, @) =A(@)Q({b(q) LY D[ p—p.(L,q)]}4D)

values forg(x,¢). Results of approximation for the crossing ®)
amplitudeA(L,q) are placed in Table Ill. For each value of , e
g=1,2,3, amplitude#\(L,q) are equal within our numerical 1000 ¢ ol
accuracy of the approximation. Therefore, we can conclude “ .o
that the scaling amplitude depends upqnand depends J_,..-"‘
weakly uponL. = .V’_,r"’
. . 8 100 ’ .
TABLE 1ll. The scaling amplitude A(L,gq) for L om X
=16, 32, 64, 128. X
g=1 =
q 1 2 3 4 e
10 t g=4 —A—
A(L=16) 0.18062) 0.1661) 0.1512) 0.1372) 100
A(L=32) 0.17943) 0.1671) 0.1512) 0.1322)
A(L=64) 0.18063) 0.1671) 0.1481) 0.1282)
A(L=128) 0.17943) 0.1641) 0.1492) 0.1222) FIG. 3. Nonuniversal metric factoB(L,q). Results of approxi-

mation by the functiorb(q)LY® are shown by lineg¢see Table V.
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TABLE V. The approximation of the nonuniversal metric factors
B(L,q) by functionb(q)LY®. The inverse correlation length index
1/v(q) is added for comparison.

q 1 2 3 4
b(q) 1.7376)  1.653) 1.513) 1.393)
v(Q) 0.758)  1.0143)  1.21816)  1.396)

1/v(q) 0.75 1 1.2 1.5

of the scaling variable={b(q) L @[ p—p.(L,q)]}¢®. As
we can conclude from Fig. 2, functid@(z) looks like ex-
ponentQ(z) =exp(—|Z) on the interval 0.£z<3, but devi-
ates from it in the vicinity of 0 and on the tailg/>3.

PHYSICAL REVIEW B8, 026125 (2003

Let us pay attention to the important details of this work.
We consider the universality of the crossing probability for
different values ofg by adding the scaling inde&(q). We
work in the scalep, wherep=1—exp(—p) is the probability
of a bond to be closed, instead of the usual sc¢at€T
—T.)/T. to make the crossing probability symmetric. We
find numerically the scaling inde&(q). The universal func-
tion looks like Q(z)=exp(—|2)) on the interval 0.xz<3.
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