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Universality of the crossing probability for the Potts model for qÄ1, 2, 3, 4

Oleg A. Vasilyev*
L.D. Landau Institute for Theoretical Physics RAS, 117940 Moscow, Russia

~Received 28 January 2003; published 25 August 2003!

The universality of the crossing probabilityphs of a system to percolate only in the horizontal direction was
investigated numerically by a cluster Monte Carlo algorithm for theq-state Potts model forq52, 3, 4 and for
percolationq51. We check the percolation through Fortuin-Kasteleyn clusters near the critical point on the
square lattice by using representation of the Potts model as the correlated site-bond percolation model. It was
shown that probability of a system to percolate only in the horizontal directionphs has the universal form
phs5A(q)Q(z) for q51,2,3,4 as a function of the scaling variablez5$b(q)L1/n(q)@p2pc(q,L)#%z(q). Here,
p512exp(2b) is the probability of a bond to be closed,A(q) is the nonuniversal crossing amplitude,b(q)
is the nonuniversal metric factor,n(q) is the correlation length index, andz(q) is the additional scaling index.
The universal functionQ(x).exp(2uzu). The nonuniversal scaling factors were found numerically.
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I. INTRODUCTION

The concept of the universality and scaling relations@1# is
a general concept of the modern phase transition theory.
main point of the scaling theory is that in the vicinity of th
critical point for a system of linear sizeL, the critical behav-
ior of thermodynamical quantities can be expressed as a
versal function of two variables: reduced temperaturet
5(T2Tc)/Tc and external fieldh. The finite-size scaling of
thermodynamical functions of spin models was studied th
retically and numerically@2–5#. In Ref. @6#, Privman and
Fisher proposed the idea of the universal finite-size sca
with nonuniversal metric factors. For example, for the fre
energy density of system sizeL and dimensiond,

f ~T,h;L !5L2dY~C1tL1/n,C2hL(b1g)/n!, ~1!

wheren is the scaling index for correlation length,b is the
scaling index of magnetization, andg is the scaling index of
magnetic susceptibility. For systems of different bound
conditions, aspect ratios, and geometries~square, honey-
comb, triangle!, the scaling functionY(x,y) is universal and
only metric factorsC1 andC2 are system dependent. Scalin
properties of thermodynamical functions of the Potts mo
were investigated in Refs.@7,8#.

Langlands, Pichet, Pouliot, and Saint-Aubin@9# show that
for site and bond percolation on square, honeycomb,
triangle lattices with aspect ratiosa, aA3, andaA3/2, re-
spectively, the crossing probabilityph of a system to perco
late in the horizontal direction is the universal function ofa.
Hu and Lin show that by choosing a very small number
nonuniversal metric factors, all the scaled data for perco
tion functions and the number of percolating clusters
square, honeycomb, and triangle lattices may fall on
same universal scaling functions@10,11#. Their scaling argu-
ment wasx5(p2pc)L

1/n, wherepc is the critical point,L is
the lattice size, andn is the correlation length index. Th
scaling of crossing probabilities for the three-dimensio
percolation was investigated in Ref.@12#.
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The continuum limit of the crossing probabilityph(pc)
was investigated by J. Cardy by conformal field metho
@13–15#. The analogous formula for the crossing probabil
phv5ph2phs was found by Watts@16#. The works of
Smirnov @17,18# analytically proved that the crossing fo
mula holds for the continuum limit of site percolation on th
triangle lattice@17,18#.

The q-state Potts model can be represented as the co
lated site-bond percolation in terms of Fortuin-Kastele
~FK! clusters@19#. At the critical point of the second orde
phase transition Potts model, FK clusters exhibit the per
lation transition. So, there is an intrinsic relationship betwe
critical properties of the Potts model and percolation prop
ties of FK clusters. The universality of the crossing probab
ity for the Ising model on rectangle lattices of square, ho
eycomb, and triangle geometries was investigated
Langlandset al. @20,21#. Hu, Chen, and Lin show the uni
versality of the crossing probabilityph and a number of
percolation clusters for the correlated site-bond percola
q52 @22#.

In this paper, the crossing probabilities of FK clusters
studied numerically. We investigate the universality of t
crossing probability with respect to a number of spin stateq
of the Potts model. We show numerically that the probabi
of a system to percolate only in horizontal directionphs is a
universal function of the scaling variablez5@b(q)L1/n(p
2pc)#z(q) for q51,2,3,4, wherep512exp(2b) is the
probability of bond to be closed,b51/TkB is an inverse
temperature,pc512exp(2bc) is the location of critical
point in thep scale,b(q) is a nonuniversal metric factor, an
z(q) is a scaling index, described dependence of the form
the crossing probability onq.

We show that for each valueq51,2,3,4 on the square
lattice, indexz practically does not depend on the lattic
size. Therefore, by introducing this indexz(q), we can lay
on the same curve the points for differentq in the critical
region.

II. CROSSING PROBABILITIES FOR THE POTTS
MODEL

In the Potts model, each spins i can take one of theq
different values 1, . . . ,q and the Hamiltonian is written a
©2003 The American Physical Society25-1
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H52J( ( i , j )d(s i ,s j ), where J is the ferromagnetic cou
pling constant, which we set equal to 1. The partition fun
tion of the Potts model@23# is

Z5(
s

exp@2bH~v!#5(
s

)
( i , j )

@~12p!1pd~s i ,s j !#,

~2!

where b51/TkB is the inverse temperature,p51
2exp(2b) is the probability of bond to be closed, and
2p5exp(2b) is the probability of bond to be open
summation is performed over all spin configurationss.
Sometimes the term in square brackets is expres
via v5exp(b)21: @(12p)1pd(s i ,s j )#5exp(2b)@1
1vd(si ,sj)#, but we write Eq.~2! via p, to emphasize the
fact that in correlated site-bond percolation@19#, the prob-
ability of bond to be closed isp and to be open is 12p.

For the square lattice of linear sizeL with periodic bound-
ary conditions, the total number of bonds isN52L2. Let us
define byL the graph of all the edges on the lattice. T
product over all bonds (i , j ) consists ofN terms, so the prod-
uct may be expanded as sum of 2N terms. Let us associate t
each of these 2N terms subgraphG of graphL, by the fol-
lowing rule. Each of 2N terms can be considered as the pro
uct of N factors. Each factor@(12p)1pd(s i ,s j )# corre-
sponds to some edge (i , j ) of graphL. To constructG, we
perform the following procedure. If this factor for edge (i , j )
is equal to 12p, we delete edge (i , j ) from subgraph. If this
factor for edge (i , j ) is equal top, we leave this edge in the
subgraph. So we associate to each term in sum~2!, subgraph
G. Each subgraphG consists ofb(G) edges~closed bonds!
and C(G) connected components. The term in Eq.~2! cor-
responding toG contains factor (12p)N2b(G)pb(G), and
delta functions guarantee equivalence of spins in each
nected component. As a result of the summation over
possible spin configurations, the contribution of this su
graph G into the partition function is qC(G)(1
2p)N2b(G)pb(G). Therefore, we can replace the summati
over all spin configurations in Eq.~2! by summation over all
possible subgraphG on L:

Z5 (
GPL

qC(G)~12p!N2b(G)pb(G). ~3!

We shall keep in mind that this definition is valid even f
the noninteger value ofq. The partition function of the Potts
model for q→1 corresponds to the percolation, wherep is
the probability of bond to be occupied.

Now we introduce the crossing probabilityphs , the prob-
ability of a system to percolate only in the horizontal dire
tion while the percolation in the vertical direction is abse
We must distinguish it from the probability of a system
percolate in the horizontal direction irrespective of the p
colation in the vertical directionph . We define the indicator
function I hs(G) for each subgraphG in accordance with the
rule
02612
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I hs~G!5H 1 if G percolates only in horizontal direction

0 in all others cases.

~4!

We mean thatG percolates only in the horizontal direction
it contains at least one connected component touching
and right sides of the lattice, and there are no compone
joining top and bottom sides. Therefore, the crossing pr
ability phs(b;L,q) of a system of sizeL with q possible spin
states to percolate only in the horizontal direction atb can be
written as

phs~b;L,q!5
1

Z (
GPL

I hs~G!qC(G)~12p!N2b(G)pb(G).

~5!

Here,p512exp(2b). We can introduce the crossing prob
ability for vertical directionpvs in the same way. But on the
square lattice,phs5pvs and later on, the investigate onl
phs .

Let us notice thatphs(b;L,q) has a maximum near th
critical point bc(L,q) because in the ordering phaseb
.bc(L,q), the most probable configurations contain lar
clusters touching top and bottom sides of the lattice, and
not contribute tophs .

III. NUMERICAL RESULTS

We use the Wolff cluster algorithm@24# to generate the
different spin configurations. For each spin configuration
generate a bond configuration in accordance with Ref.@19#.
Then, we break the lattice into independent clusters of c
nected sites by using the Hoshen-Kopelman@25# algorithm.
Then, we analyze crossing propertiesI hs(G) of this configu-
ration. Between checking the crossing we skip five Mon
Carlo steps. For each value ofb, the averaging is performed
over ten series each of 105 configurations. The total numbe
of configurations is 106. Sets of configurations are used fo
the estimation of the numerical inaccuracy. QuantityI hs is an
indicator function. It means that it takes values 0 or
for each configuration. Therefore, the resolution of o
computations for phs is 1026. We compute data
for q51(percolation),2,3,4 and lattice sizesL
516,32,48,64,80,96,112,128. For each pair (q,L), we per-
form computation for 200 values ofb ~or p for percolation!
in the critical region.

There is a very important question, how the scaling va
able should be chosen?

For percolationq51, the scaling variable is defined a
the deviation of the bond concentration from critical po
r 5p2pc . For the Potts model, we can take

~1! t5(T2Tc)/Tc .
~2! t5b2bc /bc .
~3! r 5@12exp(2b)#2@12exp(2bc)#5p2pc .

The first variantt5(T2Tc)/Tc is usual for the investigation
of thermodynamic quantities@1,23#, the second one is widely
used for the approximation of magnetic susceptibilityx of
the Ising model in the critical region@26#, and the third vari-
5-2
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antr 5p2pc may be argued by the fact that for the site-bo
correlated percolation, the probability of bond to be occup
is p512exp(2b). See Eqs.~2! and ~3!.

Let us evaluate the symmetry of the crossing probabi
as a function of all these variables by comparing third m
ments of functionphs . We assume thatphs must be the mos
symmetric function as a function of ‘‘right’’ variable. We
calculate four moments ofphs(x) as a function of x
5t,t,r , by numerical integration in accordance with formu
m05*phs(x)dx, m15(1/m0)*xphs(x)dx, mk5(1/m0)*(x
2m1)kphs(x)dx. Results of computationsm3 for the lattice
sizeL5128 are given in Table I.

We see that for all the casesm3 is smaller for scaling
variabler, with one exceptionq54, t, when numerical error
is approximately thirty times greater than valuem3(t) and
six times greater thanm3(r ). For all other lattice sizesL
516, . . .,112, the third momentm3, calculated by using
variabler, is smaller than fort or for t. Therefore, we will
work with the scaling variablep512exp(2b), the probabil-
ity of bond to be closed forq52,3,4. The critical point of
the q-state Potts model on the infinite lattice is@23# pc(q)
5Aq/(Aq11). The bond percolation critical pointpc(q
51)5 1

2 can be obtained from this formula. Variablep51
2exp(2b) naturally provides crossover from the percolati
to the Potts model. We can plot the crossing probabilityphs
as a function ofp for the percolation and the Potts model o
the same graph.

In Fig. 1, data forphs(p;L,q) are plotted forq51,2,3,4
and L532,64,128. We can see shift of the critical poi
pc(q,L) for finite lattice sizesL. We also see the change o
the width of the function due to size scaling. Let us try
identify the shape ofphs by analyzing ratiom4 /m2

2. We
know that at least for the percolation, functionphs looks like
the Gaussian function@27# ;A exp(2x2), and for the Gauss
ian function we expect (m4 /m2

2)(Gaussian)53. But, in real-
ity, crossing probabilities are not Gaussian. The mome
ratio for functionph8(p) @the derivative of crossing probabi
ity ph(p) with respect top], for the percolation model was
found by Ziff to bem4 /m2

2(q51).3.20(5) @28#, and more

TABLE I. The third momentm3 of the crossing probabilityphs ,
computed for different variablest, t, andr.

q 2 3 4

t 27.1(3)31028 29.1(2)31029 28(1)310210

t 22.1(6)31028 22.3(2)31029 22(77)310212

r 2.5(2)31029 2.8(1)310211 1.3(5)310211
02612
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precisely,m4 /m2
2(q51).3.176(4) Ref.@29# and by Hovy

and Aharony,m4 /m2
2(q51).3.174(25) @30#. The explana-

tion of the non-Gaussian crossing probability shape was
given by Berlyard and Wehr@31# and was also discussed i
Ref. @32#. Newman and Ziff verify that the tails of the cross
ing probability fall off as exp@2c(p2pc)

4/3#, therefore the
tail of the distribution is characterized by the correlati
length exponent@33,34#. However, as the first approximatio
we introduce an additional scaling indexz and check mo-
ment ratios for functiong(x;z)5Aexp(2xz). For this func-
tion g(x;z), the moment ratios are

m4

m2
2 ~z!5

GS 1

z DGS 5

z D
GS 3

z D 2 . ~6!

We calculate moments for several values ofz and put these
data into the first (z) and the second@(m4 /m2

2)(z)# rows of
Table II. The choice of valuesz will be argued later. Results
of computation of the moments ratio (m4 /m2

2)(q) for the
crossing probabilityphs(p;L,q) for L532,128 is placed in
the fourth and fifth row of Table II. We see that the momen
ratio practically does not depend upon the lattice sizeL. We
check this fact for other lattice sizes.

Moment ratios forg(x;z) slightly differ from moment
ratios forphs ~this fact will be explained later!, but we can
try to approximate the crossing probability by functio
g(x,z) and then compare results of approximation with n
merical data.

Below, we describe the fitting procedure. As we can s
from Fig. 1, there are many nonuniversal scaling factors
phs : the amplitude of the crossing probabilityA(L,q), the

FIG. 1. The crossing probabilityphs(p;L,q) for q51, 2, 3, 4
andL532, 64, 128.
TABLE II. The ratio of momentsm4 /m2
2 for g(x,z) andphs(p;L,q).

z 2 3/2 4/3 6/5

(m4 /m2
2)(z) analytically 3 3.76195 4.22219 4.7434

q 1 2 3 4
(m4 /m2

2)(q) numericallyL532 3.145~6! 3.871~7! 4.577~14! 5.28~2!

(m4 /m2
2)(q) numericallyL5128 3.18~2! 3.91~8! 4.56~2! 5.30~4!
5-3
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finite-size critical pointpc(L,q), which differs from pc(L
5`,q)5Aq/Aq11, the nonuniversal scaling facto
B(L,q), which provides the finite-size scaling of the fun
tion, and the additional scaling indexz(L,q).

We perform the four-parametric fit ofphs(p;L,q) by
function ~7!:

F~p;L,q!5A~q,L !exp„2$B~L,q!@p2pc~L,q!#%z(L,q)
….
~7!

We use points ln(phs).29 for this fit and the log scale fo
the ordinate axis. As a result of the approximation, we ge
set of scaling amplitudesA(q,L), nonuniversal metric
B(q,L), critical pointspc(q,L) and scaling indicesz(q,L).
Then, we use this scaling factors to adjust our numerical d
onto one line forq51,2,3,4 andL532,128. We plot f
5u ln@phs(p;L,q)#2ln@A(L,q)#u as a function of the new sca
ing variablez5$B(L,q)@p2pc(L,q)#%z(L,q) in Fig. 2.

The scaling straight linesuzu, shown in Fig. 2, correspond
to the fitting functionF(z)5exp(2uzu). We see that all points
lie on one curve, and this curve is very close touzu in the
range 0.1,z,3. So, we might expect that our fitting proc
dure is correct. However, on the graph, the tail points dev
from line uzu, and this deviation explains the fact that m
ment ratios forphs(p;L,q) in Table II differ from analytical
values forg(x,z). Results of approximation for the crossin
amplitudeA(L,q) are placed in Table III. For each value o
q51,2,3, amplitudesA(L,q) are equal within our numerica
accuracy of the approximation. Therefore, we can concl
that the scaling amplitude depends uponq and depends
weakly uponL.

FIG. 2. The scaled crossing probabilityf (z)5u ln(Q(z))u
5uln(phs)2ln@A(L,q)#u as a function of the scaling variablez
5$B(L,q)@p2pc(L,q)#%z(L,q) for q51, 2, 3, 4 andL532, 128.

TABLE III. The scaling amplitude A(L,q) for L
516, 32, 64, 128.

q 1 2 3 4

A(L516) 0.1806~2! 0.166~1! 0.151~2! 0.137~2!

A(L532) 0.1794~3! 0.167~1! 0.151~2! 0.132~2!

A(L564) 0.1806~3! 0.167~1! 0.148~1! 0.128~2!

A(L5128) 0.1794~3! 0.166~1! 0.149~2! 0.122~2!
02612
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Results of the approximation for the scaling indexz(L,q)
are represented in Table IV. We can see that this sca
index practically does not depend upon lattice size. We
sume that for each valueq we have the additional scalin
indexz(q), which is nondependent upon the lattice size. T
values ofz in the first row of Table II are chosen to be clos
to z(q). It seems thatz(3)54/3 andz(4)56/5.

We know that in accordance with the scaling theory
each fixed valueq the crossing probability must be a unive
sal function of variablex5L1/n(q)@p2pc(L,q)#. Therefore,
we approximate the numerical data forB(L,q) ~see Fig. 3!
by functionb(q)Ly(q) and represent results in Table V. R
sults of the approximationb(q)Ly(q) are also shown in Fig. 3
by lines.

We can see that the thermal scaling indexy(q) is very
close to the analytical value of the inverse correlation len
index 1/n(q) @23#, which is represented in Table V for com
parison. This fact once more confirms our approximat
procedure. The exception is the caseq54, for which there is
a difference betweeny(q54) and 1/n(q54).

Many critical quantities in the Potts modelq54 exhibit
logarithmic corrections@35–38#. These logarithmic correc
tions explain the difference between analytical value 1/n(q
54)51.5 and numerical approximation for the scaling ind
y51.39(6).

IV. CONCLUSIONS

To summarize the results, we can conclude that the cr
ing probabilityphs(p;L,q) is a universal functionQ(z):

phs~p;L,q!5A~q!Q„$b~q!L1/n(q)@p2pc~L,q!#%z(q)
…

~8!

FIG. 3. Nonuniversal metric factorsB(L,q). Results of approxi-
mation by the functionb(q)Ly(q) are shown by lines~see Table V!.

TABLE IV. The scaling indexz(L,q) for L516, 32, 64, 128.

q 1 2 3 4

z(L516) 1.921~3! 1.577~12! 1.398~15! 1.264~18!

z(L532) 1.900~4! 1.557~12! 1.364~13! 1.238~14!

z(L564) 1.886~4! 1.55~12! 1.367~13! 1.218~15!

z(L5128) 1.887~5! 1.545~14! 1.337~13! 1.198~14!
5-4
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of the scaling variablez5$b(q)L1/n(q)@p2pc(L,q)#%z(q). As
we can conclude from Fig. 2, functionQ(z) looks like ex-
ponentQ(z).exp(2uzu) on the interval 0.1,z,3, but devi-
ates from it in the vicinity of 0 and on the tailsuzu.3.

TABLE V. The approximation of the nonuniversal metric facto
B(L,q) by functionb(q)Ly(q). The inverse correlation length inde
1/n(q) is added for comparison.

q 1 2 3 4

b(q) 1.737~6! 1.65~3! 1.51~3! 1.38~3!

y(q) 0.756~8! 1.011~3! 1.218~16! 1.39~6!

1/n(q) 0.75 1 1.2 1.5
-

, J

02612
Let us pay attention to the important details of this wo
We consider the universality of the crossing probability f
different values ofq by adding the scaling indexz(q). We
work in the scalep, wherep512exp(2b) is the probability
of a bond to be closed, instead of the usual scalet5(T
2Tc)/Tc to make the crossing probability symmetric. W
find numerically the scaling indexz(q). The universal func-
tion looks likeQ(z).exp(2uzu) on the interval 0.1,z,3.
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